首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25702篇
  免费   2182篇
  国内免费   2166篇
  2024年   21篇
  2023年   321篇
  2022年   404篇
  2021年   1361篇
  2020年   909篇
  2019年   1097篇
  2018年   1040篇
  2017年   765篇
  2016年   1094篇
  2015年   1603篇
  2014年   1891篇
  2013年   2012篇
  2012年   2445篇
  2011年   2081篇
  2010年   1318篇
  2009年   1059篇
  2008年   1427篇
  2007年   1196篇
  2006年   1088篇
  2005年   917篇
  2004年   760篇
  2003年   647篇
  2002年   591篇
  2001年   494篇
  2000年   383篇
  1999年   436篇
  1998年   263篇
  1997年   227篇
  1996年   257篇
  1995年   210篇
  1994年   255篇
  1993年   152篇
  1992年   221篇
  1991年   184篇
  1990年   174篇
  1989年   115篇
  1988年   83篇
  1987年   76篇
  1986年   50篇
  1985年   64篇
  1984年   48篇
  1983年   39篇
  1982年   37篇
  1981年   24篇
  1980年   16篇
  1979年   25篇
  1977年   15篇
  1976年   16篇
  1975年   15篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 646 毫秒
991.
Pathogens present in the environment pose a serious threat to human, plant and animal health as evidenced by recent outbreaks. As many pathogens can survive and proliferate in the environment, it is important to understand their population dynamics and pathogenic potential in the environment. To assess pathogenic potential in diverse habitats, we developed a functional gene array, the PathoChip, constructed with key virulence genes related to major virulence factors, such as adherence, colonization, motility, invasion, toxin, immune evasion and iron uptake. A total of 3715 best probes were selected from 13 virulence factors, covering 7417 coding sequences from 1397 microbial species (2336 strains). The specificity of the PathoChip was computationally verified, and approximately 98% of the probes provided specificity at or below the species level, proving its excellent capability for the detection of target sequences with high discrimination power. We applied this array to community samples from soil, seawater and human saliva to assess the occurrence of virulence genes in natural environments. Both the abundance and diversity of virulence genes increased in stressed conditions compared with their corresponding controls, indicating a possible increase in abundance of pathogenic bacteria under environmental perturbations such as warming or oil spills. Statistical analyses showed that microbial communities harboring virulence genes were responsive to environmental perturbations, which drove changes in abundance and distribution of virulence genes. The PathoChip provides a useful tool to identify virulence genes in microbial populations, examine the dynamics of virulence genes in response to environmental perturbations and determine the pathogenic potential of microbial communities.  相似文献   
992.
The apelin/apelin receptor (APJ, apelin-angiotensin receptor-like 1) system is a newly deorphanized G protein- coupled receptor system. Both apelin and APJ that are important regulatory factors are expressed in the cardio- vascular system. Our previous studies demonstrated that apelin-13 significantly stimulated vascular smooth muscle cell (VSMC) proliferation. In this paper, our data sug- gested that the Jagged-l/Notch3 signaling transduction pathway is involved in apelin-13-induced VSMC prolifer- ation by promoting the expression of Cyclin D1. Results indicated that apelin-13 stimulates the proliferation of VSMC and the expression of Jagged-1 and Notch3 in con- centration- and time-dependent manners. The increased expression of Jagged-1 and Notch3 induced by apelin-13 could be abolished by extracellular signal-regulated protein kinase (ERK) blockade. PD98059 (ERK inhibitor) can inhibit the activation of Jagged-I/Notch3 induced by apelin- 13. Down-regulation of Notch3 using small interfering RNA inhibits the expression of Cyclin DI and prevents apelin- 13-induced VSMC proliferation. In conclusion, Jagged-I/ Notch3 signaling transduction pathway is involved in VSMC proliferation induced by apelin-13.  相似文献   
993.
The site-specific characterization of N-glycans in glycopro- teins with the potential of clinical application is important. In our previous report, the overall N-glycans of sera haptoglobin (Hp) β chain were found to be different in liver diseases. Hp β chain contains four potential sites of N-glycosylation. In this study, we investigated the potential change of N-glycans on Hp β chain in a site-specific fashion. Sera Hp β chain in healthy individuals as well as patients with hepatitis B virus (HBV), liver cirrhosis (LC) and hepatocellular carcinoma (HCC) were purified, digested and subjected to liquid chromatography-electro- spray ionization-higher energy collision dissociation mass spectrometry, which allowed identification and structure determination of the glycopeptide, as well as the relative quantification of glycans present on each glycopeptide. The quantitative results revealed that the sialylation of NLFLN207HSEN211 ATAK and the fucosylated structure at all glycopeptides increased significantly in LC and HCC patients compared with those in HBV patients and healthy individuals. A set of different N-glycan patterns of Hp β chain in various liver diseases has been determined. Thus, the sialylated and fucosylated glycoforms of Hp β chain might be related to early hepatocarcinogenesis and also might be useful as novel differential markers for LC and HCC patients.  相似文献   
994.
In this study, three kinds of phenothiazine drugs were analyzed to explore their potential antitumor mechanisms. First, target proteins that could interact with chlorpromazine, fluphenazine and trifluoperazine were predicted. Then, the target proteins of the three drugs were intersected. Cell signaling pathway enrichment and related disease enrichment were conducted for the intersected proteins to extract the enrichment categories associated with tumors. By regulation network analysis of the protein interactions, the mechanisms of action of these target proteins in tumor tissue were clarified, thus confirming the potential antitumor mechanisms of the phenothiazine drugs. The final results of cell signaling pathway enrichment and related disease enrichment showed that the categories with the highest score were all found in tumors. Target proteins belonging to the tumor category included signaling pathway members such as Wnt, MAPK and retinoic acid receptor. Moreover, another target protein, MAPK8, could indirectly act on target proteins CDK2, IGF1R, GSK3B, RARA, FGFR2 and MAPK10, thereby affecting tumor cell division and proliferation. Therefore, phenothiazine drugs may have potential antitumor effects, and tumor-associated target proteins play important roles in the process of cell signaling transduction cascades.  相似文献   
995.
996.
Duck egg drop syndrome virus(DEDSV) is a newly emerging pathogenic flavivirus isolated from ducks in China.DEDSV infection mainly results in severe egg drop syndrome in domestic poultry,which leads to huge economic losses.Thus,the discovery of ways and means to combat DEDSV is urgent.Since 2010,a remarkable amount of progress concerning DEDSV research has been achieved.Here,we review current knowledge on the epidemiology,symptomatology,and pathology of DEDSV.A detailed dissection of the viral genome and polyprotein sequences,comparative analysis of viral antigenicity and the corresponding potential immunity against the virus are also summarized.Current findings indicate that DEDSV should be a distinct species from Tembusu virus.Moreover,the adaption of DEDSV in wildlife and its high homology to pathogenic flaviviruses(e.g.,West Nile virus,Japanese encephalitis virus,and dengue virus),illustrate its reemergence and potential to become a zoonotic pathogen that should not be overlooked.Detailed insight into the antigenicity and corresponding immunity against the virus is of clear significance for the development of vaccines and antiviral drugs specific for DEDSV.  相似文献   
997.
To improve the fermentation yield of xylanase by optimizing the fermentation conditions for strain Xw2, a Plackett-Burman design was used to evaluate the effects of eight variables on xylanase production by strain Xw2. The steepest ascent (descent) method was used to approach the optimal response surface experimental area. The optimal fermentation conditions were obtained by central composite design and response surface analysis. The results showed that the composition of the optimal fermentation medium was corn cob + 1.5% wheat bran (1:1), 0.04% MnSO4, 0.04% K2HPO4. 3H2O, and an inoculum size of 6% in 50 mL liquid volume (pH = 6.0). The optimal culture conditions were 28oc at 150 r/min for 54.23 h. The results of this study can serve as the basis for the industrial production and application of xylanase.  相似文献   
998.
Monoclonal antibodies (mAbs) are important therapeutic proteins. One of the challenges facing large-scale production of monoclonal antibodies is the capacity bottleneck in downstream processing, which can be circumvented by using magnetic stimuli-responsive polymer nanoparticles. In this work, stimuli-responsive magnetic particles composed of a magnetic poly(methyl methacrylate) core with a poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AA)) shell cross-linked with N, N'-methylenebisacrylamide were prepared by miniemulsion polymerization. The particles were shown to have an average hydrodynamic diameter of 317 nm at 18°C, which decreased to 277 nm at 41°C due to the collapse of the thermo-responsive shell. The particles were superparamagnetic in behavior and exhibited a saturation magnetization of 12.6 emu/g. Subsequently, we evaluated the potential of these negatively charged stimuli-responsive magnetic particles in the purification of a monoclonal antibody from a diafiltered CHO cell culture supernatant by cation exchange. The adsorption of antibodies onto P(NIPAM-co-AA)-coated nanoparticles was highly selective and allowed for the recovery of approximately 94% of the mAb. Different elution strategies were employed providing highly pure mAb fractions with host cell protein (HCP) removal greater than 98%. By exploring the stimuli-responsive properties of the particles, shorter magnetic separation times were possible without significant differences in product yield and purity.  相似文献   
999.
Artemisinin is an endoperoxide sesquiterpene lactone isolated from the aerial parts of Artemisia annua L., and is presently the most potent anti-malarial drug. Owing to the low yield of artemisinin from A. annua as well as the widespread application of artemisinin-based combination therapy recommended by the World Health Organization, the global demand for artemisinin is substantially increasing and is therefore rendering artemisinin in short supply. An economical way to increase artemisinin production is to increase the content of artemisinin in A. annua. In this study, three key genes in the artemisinin biosynthesis pathway, encoding farnesyl diphosphate synthase, amorpha-4, 11-diene C-12 oxidase and its redox partner cytochrome P450 reductase, were over-expressed in A. annua through Agrobacterium-mediated transformation. The transgenic lines were confirmed by Southern blotting and the over-expressions of the genes were demonstrated by real-time PCR assays. The HPLC analysis showed that the artemisinin contents in transgenic lines were increased significantly, with the highest one found to be 3.6-fold higher (2.9 mg/g FW) than that of the control. These results demonstrate that multigene engineering is an effective way to enhance artemisinin content in A. annua.  相似文献   
1000.
The importance of neovascularization for primary and metastatic tumor growth fostered numerous clinical trials of angiogenesis inhibitors either alone or in combination with conventional antineoplastic therapies. One challenge with the use of molecularly targeted agents has been the disconnection between size reduction and tumor biologic behavior, either when the drug is efficacious or when tumor resistance emerges. Here, we report the synthesis and characterization of 64Cu-NOTA-bevacizumab as a PET imaging agent for imaging intratumoral VEGF content in vivo. 64Cu-NOTA-bevacizumab avidly accumulated in 786-O renal carcinoma xenografts with lower levels in host organs. RAD001 (everolimus) markedly attenuated 64Cu-NOTA-bevacizumab accumulation within 786-O renal carcinoma xenografts. Tumor tissue and cellular molecular analysis validated PET imaging, demonstrating decreases in total and secreted VEGF content and VEGFR2 activation. Notably, 64Cu-NOTA-bevacizumab PET imaging was concordant with the growth arrest of RAD001 tumors. These data suggest that immunoPET targeting of angiogenic factors such as VEGF could be a new class of surrogate markers complementing the RECIST criteria in patients receiving molecularly targeted therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号